Article 12315

Title of the article

IONIC TUNNELING CONDUCTIVITY MECHANISM FOR GROWING COLLOIDAL GOLD QUANTUM DOTS

Authors

Krevchik Vladimir Dmitrievich, Doctor of physical and mathematical sciences, professor, dean of the faculty of instrument engineering, information technology and electronics, Penza State University (40 Krasnaya street, Penza, Russia), physics@pnzgu.ru
Semenov Mikhail Borisovich, Doctor of physical and mathematical sciences, professor, head of sub department of physics, Penza State University (40 Krasnaya street, Penza, Russia), physics@pnzgu.ru
Filatov Dmitriy Olegovich, Doctor of physical and mathematical sciences, head of probing microscopy laboratory of Research Institute of Applied Physics, Lobachevsky State University of Nizhny Novgorod (3 building, 23 Gagarina avenue, Nizhny Novgorod, Russia), dmitry_filatov@inbox.ru
Krevchik Pavel Vladimirovich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), physics@pnzgu.ru
Egorov Il'ya Andreevich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), physics@pnzgu.ru
Sultanov Maksim Andreevich, Student, Penza State University (40 Krasnaya street, Penza, Russia), beyondbirthday3757@gmail.com
Skorosova Irina Konstantinovna, Student, Penza State University (40 Krasnaya street, Penza, Russia), rinochka93@yandex.ru

Index UDK

539.23; 539.216.1; 537.311.322

Abstract

Background. For experimental studies of fundamental physical effects in systems of ultrafine nanoparticles(UFNP) in a dielectric matrix, as well as for instrumental applications it is necessary to develop a technology of controlled growth of UFNP of set sizes in the ultra-thin dielectric film, that is relevant for both precise nanoelec-tronics and modern nanomedicine. The purpose of this work is to study the features of the tunneling volt-ampere characteristics(CVC), obtained for growing colloidal gold quantum dots in the combined atomic–force and scanning tunnel micro-scope(AFM/STM), as well as to investigate conditions of possible contribution of 2D – dissipative tunneling in the tunneling CVC.
Materials and methods. The experimental methods correspond to methods of the authors from the University of Kobe(Japan)[12]. Formation of gold particles in films of Au(III) – SiO2/TiO2 was performed using an atomic force microscope. The theo-retical work was carried out in the theory of dissipative tunneling using the instanton method.
Results. In this work the authors obtained the tunneling CVC for growing colloi-dal gold quantum dots in the AFM/STM system. The tunneling CVC with the theo-retical curve of field dependence of probability of 2D – dissipative tunneling was compared with the influence of two local phonon modes of the wide-band matrix. Qualitative matching of the experimental and theoretical curves indicates the possi-ble contribution of dissipative tunneling in the tunneling current through a quantum dot at the cantilever tip, which can be amplified in clusters ranging in size from 1 to 5 nm in thinner films.
Conclusions. Qualitative comparison of the tunneling CVC for growing clusters of colloidal gold in the AFM/STM system and the theoretical curve for field depend-ence of the probability of 2D – dissipative tunneling with the influence of two local phonon modes shows the presence of possible contribution of dissipative tunneling in the tunneling current through a growing QD at the initial stage of growth. It has been found that the ionic conductivity mechanism will prevail over the tunnel one when the magnitude of tension, induced by the electric field of positive gold ions, exceeds the value of the external electric field.

Key words

formation of ultrafine nanoparticles, dissipative tunneling.

Download PDF
References

1. Lifshits I. M., Slez V. V. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of experimental and theoretical physics]. 1958, vol. 35, no. 2/8, pp. 479–492.
2. Fukami K., Chayahara A., Kadono K., Sakaguchi T., Horino Y., Miya M., Fujii K., Ha-yakawa J. and Satou M. J. Appl. Phys. 1994, vol. 75, no. 6, pp. 3075–3080.
3. Chu B. H., Chang C. Y., Kroll K., Denslow N., Wang Y. L., Pearton S. J., Dabiran A. M., Wowchak A. M., Cui B., Chow P. P., Ren F. Appl. Phys. A. 2009, vol. 96, no. 4, pp. 317–325.
4. Gorshkov O. N., Pavlov D. A., Trushin V. N., Antonov I. N., Shenina M. E., Bobrov A. I., Markelov A. S., Dudin A. Yu., Kasatkin A. P. Pis'ma v zhurnal tekhnicheskoy fiziki [Letters to the Journal of technical physics]. 2012, vol. 38, no. 4, pp. 60–65.
5. Weihua Guan, Shibing Long, Rui Jia, and Ming Liu Appl. Phys. Lett. 2007, vol. 91, no. 6, pp. 062111 1–3.
6. Sargentis Ch., Giannakopoulos K., Travlos A., Tsamakis D. Surf. Sci. 2007, vol. 601, no. 11, pp. 2859–2853.
7. Scherban T., Xu G., Merrill C., Litteken C. and Sun B. Appl. Phys. A. 2009, vol. 94, no. 6, pp. 525–530.
8. Ryasnyanskiy A. I., Palpant B., Debrus S., Pal U., Stepanov A. L. Fizika tverdogo tela [Solid state physics]. 2009, vol. 51, no. 1, pp. 52–56.
9. Kantam M. Lakshmi., Haritha Y., Reddy N. Mahender, Choudary B. M., Figueras F. Appl. Phys. A. 2009, vol. 97, no. 1., pp. 11–18.
10. Mangold M. A., Weiss C., Calame M. and Holleitner A.W.Appl. Phys. Lett.2009,vol.94,no.16,pp.161104 1–3.
11. Yang W., Shen C., Ji Q., An H., Wang J., Liu Q. Nanotechnology. 2009, vol. 20, no. 10, pp. 105605 1–8.
12. Yanag H., Ohno T. Langmuir. 1999, vol. 15, no. 21, pp. 4773–4776.
13. Antonov D. A., Filatov D. O., Zenkevich A. V., Lebedinskiy Yu. Yu. Izvestiya RAN. Seriya fizicheskaya [RAS Proceedings. Series: physics]. 2007, vol. 71, no. 61.
14. Lapshina M. A., Filatov D. O., Antonov D. A. Poverkhnost': rentgenovskie, sinkhro-tronnye i neytronnye issledovaniya [Surface: x-ray, synchronous and neutron research]. 2008, no. 8, p. 616.
15. Borodin P. A., Bukharaev A. A., Filatov D. O., Isakov M. A., Shengurov V. G., Chalkov V. Yu., Denisov S. A. Fizika i tekhnika poluprovodnikov [Physics and technol-ogy and semiconductors]. 2011, vol. 45, p. 414.
16. Aryngazina A. K., Benderskogo V. A., Dakhnovskogo Yu. I., Dekkera Kh., Zhu-kovskogo V. Ch., Krevchika V. D., Ovchinnikova Yu. N., Semenova M. B., Ternova A. I., Yamamoto K. Upravlyaemoe dissipativnoe tunnelirovanie. Tunnel'nyy transport v nizkorazmernykh sistemakh [Controled dissipative tunneling. Tunnel transport in low-dimensional systems]. Moscow, 2012.
17. Borodin P. A., Bukharaev A. A., Filatov D. O., Vorontsov D. A., Lapshina M. A. Pov-erkhnost'. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya [Surface:x-ray,synchronous and neutron research].2009,no.9,p.71.
18. Krevchik V. D., Semenov M. B., Zaytsev R. V., Kozenko S. E., Manukhina M. A. Izves-tiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2012, no. 2 (22), p. 119.
19. Dakhnovskiy Yu. I., Ovchinnikov A. A., Semenov M. B. Zhurnal eksperimental'noy i teoreticheskoy fiziki [Journal of experimental and theoretical physics]. 1987, vol. 92, no. 3, p. 955.
20. Venkatesan A., Lulla K. J., Patton M. J., Armour A. D., Mellor C. J. and Owers-Bradley J. R. Dissipation due to tunneling two-level systems in gold nanomechanical resonators. arXiv:0912.1281v1 [cond-mat.mes-hall].
21. Bomze Yu., Mebrahtu H., Borzenets I., Makarovski A., Finkelstein G. Resonant Tunnel-ing in a Dissipative Environment. arXiv:1010.1527v1 [cond-mat.mes-hall].
22. Nanostructures. Available at: http://www.cambridge.org/9780521877480.
23. Silva da L. G., Dias G. V., Elbio D. Phys. Rev. B. 2009, vol. 79, p. 155302.
24. Grodecka A., Machnikowski P., Forstner J. Phonon – assisted tunneling between singlet states in two-electron quantum dot molecules. arXiv:0803.1734v2 [cond-mat.mes-hall] (27 Apr. 2009).
25. Zhukovskiy V. Ch., Dakhnovskiy Yu. I., Gorshkov O. N., Krevchik V. D., Semenov M. B., Smirnov Yu. G., Chuprunov E. V., Rudin V. A., Skibitskaya N. Yu., Krevchik P. V., Filatov D. O., Antonov D. A., Lapshina M. A., Yamamoto K., Shenina M. E. Vestnik Moskovskogo universiteta. Ser. 3. Fizika Astronomiya [Proceedings of Moscow Univer-sity. Series 3. Physics. Astronomy]. 2009, no. 5, p. 3.
26. Zhukovskiy V. Ch., Dakhnovskiy Yu. I., Krevchik V. D., Semenov M. B., Mayorov V. G., Kudryashov E. I., Yamamoto K. Vestnik Moskovskogo universiteta. Ser. 3. Fizika As-tronomiya [Proceedings of Moscow University. Series 3. Physics. Astronomy]. 2006, no. 3, p. 24.
27. Zhukovskiy V. Ch., Gorshkov O. N., Krevchik V. D., Semenov M. B., Groznaya E. V., Filatov D. O., Antonov D. A. Vestnik Moskovskogo universiteta. Ser. 3. Fi-zika Astro-nomiya [Proceedings of Moscow University. Series 3. Physics. Astronomy]. 2009, no. 1, p. 27.
28. Zhukovskiy V. Ch., Dakhnovskiy Yu. I., Krevchik V. D., Semenov M. B., Mayorov V. G., Kudryashov E. I., Shcherbakova E. V., Yamamoto K. Vestnik Moskovskogo univer-siteta. Ser. 3. Fizika Astronomiya [Proceedings of Moscow University. Series 3. Phys-ics. Astronomy]. 2007, no. 2, p. 10.
29. Krevchik V. D., Ovchinnikov A. A., Semenov M. B., Aringazin A. K., Dahnovsky Yu. I., Yamamoto K. Phys. Rev. B. 2003, vol. 68, pp. 155426 (1–12).

 

Дата создания: 12.02.2016 10:58
Дата обновления: 12.02.2016 14:50